Monte Carlo Simulation using Brownian Motion

This uses Brownian Motion popularized by John Hull which is:

\[\ln\left(\frac{S_t}{S_{t-1}}\right) - \phi((\mu - \sigma/2)T, \sigma \sqrt{T}) \]

\(\ln\left(\frac{S_t}{S_{t-1}}\right) \) is compounded daily return between today and yesterday

approximately distributed \(\phi \) drift menu half variance over time with volatility \(\sqrt{T} \)

This is the square root rule where volatility scales with the \(\sqrt{T} \) of time.

So there is periodic return that is approximately normally distributed. The ratio of the pricing levels are lognormally distributed. The Brownian motion becomes lognormal diffusion process.

The example log return uses a simpler formula of

\[\ln\left(\frac{S_t}{S_{t-1}}\right) = \alpha + z \sigma \]

This is equal to where alpha is determinitic and the \(z \) standard deviation is stochastic component. The alpha is the drift where it will drift upward with positive expected rate of return which is fixed. The other is a random shock where volatility and \(z \) is a random variable. The \(z \) is scaled by volatility which is a stochastic component process. It could randomly change on each recalculation which is generated by the random \(z \).

How the Monte Carlo is implemented in Excel includes 3 assumptions:

Annual drift (expected return of the stock)=10%
Annual volatility=40%
Initial Stock = $100

Other computed assumptions:
Drift daily=10/252 trading days per year = 0.4%
Volatility daily=40%/\(\sqrt{252} \) because of square root rule=2.52%
Drift (mean)=0.4%-0.5*2.5^2 (subtracting one half the variance) <-with geometric averaging, the volatility over time is eroding the returns
Over time, the process is calculated over each day with a new randomly generated plot.

$N(1,0)$ calculate by NormsInv(Rand()) Excel functions. Rand() gives probability between 0 and 1. NormsInv() translates that into the inverse standard normal cumulative distribution. This gives a value of -3 to 3. This randomized the volatility.

The Log Return can be calculated the the shortened Brownian Motion formula. This is drift+vol*z. Again z is randomly calculated which appears as $N(1,0)$ This add to the random shock which is a function of the volatility.

For the Price, multiply the Initial Price of $100 * EXP(Log Return)$

http://www.youtube.com/watch?v=e79OtCamxD0&feature=relmfu