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CUTTING EDGE. OPTION PRICING

(VV) method is an 
empirical procedure that 

can be used to infer an implied-volatility smile from three avail-
able quotes for a given maturity.1 It is based on the construction 
of locally replicating portfolios whose associated hedging costs 
are added to corresponding Black-Scholes prices to produce 
smile-consistent values. Besides being intuitive and easy to imple-
ment, this procedure has a clear financial interpretation, which 
further supports its use in practice.

The VV method is commonly used in foreign exchange options 
markets, where three main volatility quotes are typically available 
for a given market maturity: the delta-neutral straddle, referred to 
as at-the-money (ATM); the risk reversal for 25Δ call and put; 
and the (vega-weighted) butterfly with 25Δ wings.2 The applica-
tion of VV allows us to derive implied volatilities for any option’s 
delta, in particular for those outside the basic range set by the 25Δ 
put and call quotes.

In the financial literature, the VV approach was introduced 
by Lipton & McGhee (2002), who compare different approaches 
to the pricing of double-no-touch options, and by Wystup 
(2003), who describes its application to the valuation of one-
touch options. However, their analyses are rather informal and 
mostly based on numerical examples. In this article, instead, we 
will review the VV procedure in more detail and derive some 
important results concerning the tractability of the method and 
its robustness.

We start by describing the replication argument the VV pro-
cedure is based on and derive closed-form formulas for the 
weights in the hedging portfolio to render the smile construc-
tion more explicit. We then show that the VV price functional  
satisfies typical no-arbitrage conditions and test the robustness 
of the resulting smile by showing that: changing the three ini-
tial pairs of strike and volatility consistently eventually produces 

the same implied-volatility curve; and the VV method, if read-
apted to price European-style claims, is consistent with static-
replication arguments. Finally, we derive first- and second-order 
approximations for the implied volatilities induced by the VV 
option price.

Since the VV method provides an efficient tool for interpolat-
ing or extrapolating implied volatilities, we also compare it with 
other popular functional forms, like that of Malz (1997) and that 
of Hagan et al (2002).

All the proofs of the propositions in this article are omitted 
for brevity. However, they can be found in Castagna & Mercu-
rio (2005).

The VV method: the replicating portfolio
We consider a forex option market where, for a given maturity T, 
three basic options are quoted: the 25Δ put, the ATM and the 
25Δ call. We denote the corresponding strikes by Ki, i = 1, 2, 3, 
K1 < K2 < K3, and set K := {K1, K2, K3}.3 The market-implied 
volatility associated with K1 is denoted by σi, i = 1, 2, 3.

The VV method serves the purpose of defining an implied-
volatility smile that is consistent with the basic volatilities σi. 
The rationale behind it stems from a replication argument in a 
flat-smile world where the constant level of implied volatility 
varies stochastically over time. This argument is presented here-
after, where for simplicity we consider the same type of options, 
namely calls.

It is well known that in the Black-Scholes (BS) model, the pay-
out of a European-style call with maturity T and strike K can be 
replicated by a dynamic Δ-hedging strategy, whose value (includ-
ing the bank account part) matches, at every time t, the option 
price CBS(t; K) given by:
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where St denotes the exchange rate at time t, τ := T – t, r d and r f 

denote, respectively, the domestic and foreign risk-free rates, and 

The vanna-volga method 
for implied volatilities

The vanna-volga

The vanna-volga method is a popular approach for 
constructing implied volatility curves in the options 
market. In this article, Antonio Castagna and Fabio 
Mercurio give it both theoretical and practical support 
by showing its tractability and robustness

1 The terms vanna and volga are commonly used by practitioners to denote the partial derivatives 
∂Vega/∂Spot and ∂Vega/∂Vol of an option’s vega with respect to the underlying asset and its volatility, 
respectively. The reason for naming the procedure this way will be clear below
2 We drop the ‘%’ sign after the level of the Δ, in accordance with market jargon. Therefore, a 25Δ call is 
a call whose delta is 0.25. Analogously, a 25Δ put is one whose delta is –0.25
3 For the exact definition of strikes K1, K2 and K3, we refer to Bisesti, Castagna & Mercurio (2005), 
where a thorough description of the main quotes in a forex option market is also provided
4 The option price when the underlying asset is an exchange rate was in fact derived by Garman & 
Kohlhagen (1983). Since their formula follows from the BS assumption, we prefer to state we are using 
the BS model, also because the VV method can in principle be applied to other underlyings
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σ is the constant BS implied volatility.4 In real financial markets, 
however, volatility is stochastic and traders hedge the associated 
risk by constructing portfolios that are vega-neutral in a BS (flat-
smile) world.

Maintaining the assumption of flat but stochastic implied vola-
tilities, the presence of three basic options in the market makes it 
possible to build a portfolio that zeros out partial derivatives up 
to the second order. In fact, denoting respectively by Δt and xi the 
units of the underlying asset and options with strikes Ki held at 
time t and setting Ci

BS(t) = CBS(t; Ki), under diffusion dynamics 
for both St and σ = σt, we have by Itô’s lemma:
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(2)

Choosing Δt and xi so as to zero out the coefficients of dSt, dσt, 
(dσt)

2 and dStdσt,
5 the portfolio comprises a long position in 

the call with strike K, and short positions in xi calls with strike 
Ki and short the amount Δt of the underlying, and is locally 
risk-free at time t, in that no stochastic terms are involved in 
its differential6:
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Therefore, when volatility is stochastic and options are valued 
with the BS formula, we can still have a (locally) perfect hedge, 
provided that we hold suitable amounts of three more options to 
rule out the model risk. (The hedging strategy is irrespective of 
the true asset and volatility dynamics, under the assumption of 
no jumps.)
■ Remark 1. The validity of the previous replication argument 
may be questioned because no stochastic-volatility model can 
produce implied volatilities that are flat and stochastic at the same 
time. The simultaneous presence of these features, though incon-
sistent from a theoretical point of view, can however be justified 
on empirical grounds. In fact, the practical advantages of the BS 
paradigm are so clear that many forex option traders run their 
books by revaluing and hedging according to a BS flat-smile 
model, with the ATM volatility being continuously updated to 
the actual market level.7

The first step in the VV procedure is the construction of the 

above hedging portfolio, whose weights xi are explicitly calculated 
in the following section.

Calculating the VV weights
We assume hereafter that the constant BS volatility is the ATM 
one, thus setting σ = σ2 (= σATM). We also assume that t = 0, drop-
ping accordingly the argument t in the call prices. From equation 
(2), we see that the weights x1 = x1(K), x2 = x2(K) and x3 = x3(K), 
for which the resulting portfolio of European-style calls with 
maturity T and strikes K1, K2 and K3 has the same vega, ∂Vega/
∂Vol and ∂Vega/∂Spot as the call with strike K ,8 can be found by 
solving the following system:
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(4)

Denoting by V(K) the vega of a European-style option with 
maturity T and strike K:
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where ϕ(x) = Φ (́x) is the normal density function, and calculat-
ing the second-order derivatives:
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we can prove the following.
■ Proposition 1. The system (4) admits a unique solution, which 
is given by:
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(6)

In particular, if K = Kj then xi(K) = 1 for i = j and zero otherwise.

The VV option price
We can now proceed to the definition of an option price that is 
consistent with the market prices of the basic options.

5 The coefficient of (dSt)
2 will be zeroed accordingly, due to the relation linking an option’s gamma and 

vega in the BS world
6 We also use the BS partial differential equation
7 ‘Continuously’ typically means a daily or slightly more frequent update
8 This explains the name assigned to the smile-construction procedure, given the meaning of the terms 
vanna and volga
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The above replication argument shows that a portfolio compris-
ing xi(K) units of the option with strike Ki (and Δ0 units of the 
underlying asset) gives a local perfect hedge in a BS world. The 
hedging strategy, however, has to be implemented at prevailing 
market prices, which generates an extra cost with respect to the 
BS value of the options portfolio. Such a cost has to be added to 
the BS price (1), with t = 0, to produce an arbitrage-free price that 
is consistent with the quoted option prices CMKT(K1), CMKT(K2) 
and CMKT(K3).

In fact, in case of a short maturity, that is, for a small T, equa-
tion (3) can be approximated as:
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Therefore, when actual market prices are considered, the option 
payout (ST – K)+ can still be replicated by buying Δ0 units of the 
underlying asset and xi options with strike Ki (investing the result-
ing cash at rate rd), provided one starts from the initial endow-
ment C(K).

The quantity C(K) in (7) is thus defined as the VV option’s 
premium, implicitly assuming that the replication error is also 
negligible for longer maturities. Such a premium equals the BS 
price CBS(K) plus the cost difference of the hedging portfolio 
induced by the market implied volatilities with respect to the 

constant volatility σ. Since we set σ = σ2, the market volatility for 
strike K2, (7) can be simplified to:

C K( ) = C BS K( ) + x1 K( ) C MKT K1( ) − C BS K1( ) 

+ x3 K( ) C MKT K 3( ) − C BS K 3( ) 
■ Remark 2. Expressing the system (4) in the form b = Ax and 
setting c = (c1, c2, c3) ,́ where ci := CMKT(Ki) – CBS(Ki), and y = (y1, 
y2, y3)ʹ := (Aʹ)–1c, we can also write:

C K( ) = C BS K( ) + y1
∂C BS

∂σ
K( )

+y2
∂2C BS

∂σ 2 K( ) + y3
∂2C BS

∂σ∂S0
K( )

The difference between the VV and BS prices can thus be inter-
preted as the sum of the option’s vega, ∂Vega/∂Vol and ∂Vega/
∂Spot, weighted by their respective hedging cost y.9 Besides 
being quite intuitive, this representation also has the advantage 
that the weights y are independent of the strike K and, as such, 
can be calculated once for all. However, we prefer to stick to the 
definition (7), since it allows an easier derivation of our approx-
imations below.

The VV option price has several interesting features that we 
analyse in the following.

When K = Kj, C(Kj) = CMKT(Kj), since xi(K) = 1 for i = j and 
zero otherwise. Therefore, (7) defines a rule for either interpolat-
ing or extrapolating prices from the three option quotes CMKT(K1), 
CMKT(K2) and CMKT(K3).

The option price C(K), as a function of the strike K, is twice dif-
ferentiable and satisfies the following (no-arbitrage) conditions:

lim K → 0+ C K( ) = S0e− r f T and lim K → +∞ C K( ) = 0

lim K → 0+
dC
dK K( ) = −e− r dT and lim K → +∞ K dC

dK K( ) = 0

These properties, which are trivially satisfied by CBS(K), follow 
from the fact that, for each i, both xi(K) and dxi(K)/dK go to zero 
for K → 0+ or K → +∞.

To avoid arbitrage opportunities, the option price C(K) should 
also be a convex function of the strike K, that is, (d2C)/(dK2)(K) 
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1 Implied volatilities plotted against strikes and put deltas (in absolute value), calibrated to the three basic euro/
dollar quotes and compared with the 10Δ (put and call) volatilities

9 We thank one of the referees for suggesting this alternative formulation
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> 0 for each K > 0. This property, which is not true in general10, 
holds however for typical market parameters, so that (7) leads to 
prices that are arbitrage-free in practice.

The VV implied-volatility curve K → ς(K) can be obtained by 
inverting (7), for each considered K, through the BS formula. An 
example of such a curve is shown in figure 1. Since, by construc-
tion, ς(Ki) = σi, the function ς(K) yields an interpolation-extrapo-
lation tool for the market implied volatilities.

Comparison with other interpolation rules
Contrary to other interpolation schemes proposed in the financial 
literature, the VV pricing formula (7) has several advantages: it 
has a clear financial rationale supporting it, based on the hedging 
argument leading to its definition; it allows for an automatic cali-
bration to the main volatility data, being an explicit function of 
σ1, σ2, σ3; and it can be extended to any European-style derivative 
(see our second consistency result below). To our knowledge, no 
other functional form enjoys the same features.

Compared, for example, with the second-order polynomial 
function (in Δ) proposed by Malz (1997), the interpolation (7) 
equally perfectly fits the three points provided, but, in accordance 
with typical market quotes, boosts the volatility value both for 
low- and high-put deltas. A graphical comparison, based on mar-
ket data, between the two functional forms is shown in figure 1, 
where their difference at extreme strikes is clearly highlighted.

The interpolation (7) also yields a very good approximation of 
the smile induced, after calibration to strikes Ki, by the most 
renowned stochastic-volatility models in the financial literature, 
especially within the range [K1, K3]. This is not surprising, since 
the three strikes provide information on the second, third and 
fourth moments of the marginal distribution of the underlying 
asset, so that models agreeing on these three points are likely to 
produce very similar smiles. As a confirmation of this statement, 
in figure 1, we also consider the example of the SABR functional 
form of Hagan et al (2002), which has become a standard in the 
market as far as the modelling of implied volatilities is concerned. 
The SABR and VV curves tend to agree quite well in the range set 

by the two 10Δ options (in the given example they almost over-
lap), typically departing from each other only for illiquid strikes. 
The advantage of using the VV interpolation is that no calibra-
tion procedure is involved, since σ1, σ2, σ3 are direct inputs of 
formula (7).

In figure 1, we compare the volatility smiles yielded by the VV 
price (7), the Malz (1997) quadratic interpolation and the SABR 
functional form11, plotting the respective implied volatilities both 
against strikes and put deltas. The three plots are obtained after 
calibration to the three basic quotes σ1, σ2, σ3, using the follow-
ing euro/dollar data as of July 1, 2005 (provided by Bloomberg): 
T = 3M ,12 S0 = 1.205, σ1 = 9.79%, σ2 = 9.375%, σ3 = 9.29%, K1 = 
1.1720, K2 = 1.2115 and K3 = 1.2504 (see also tables A and B).

Once the three functional forms are calibrated to the liquid 
quotes σ1, σ2, σ3, one may then compare their values at extreme 
strikes with the corresponding quotes that may be provided by bro-
kers or market-makers. To this end, in figure 1, we also report the 
implied volatilities of the 10Δ put and call options (respectively 
equal to 10.46% and 9.49%, again provided by Bloomberg) to show 
that the Malz (1997) quadratic function is typically not consistent 
with the quotes for strikes outside the basic interval [K1, K3].
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A. Discount factors: July 1, 2005
Expiry Dollar Euro

3M: October 3, 2005 0.9902752 0.9945049

B. Strikes and volatilities corresponding to the three 
main deltas: July 1, 2005
Delta Strike Volatility

25D put 1.1720 9.79%

At-the-money 1.2115 9.375%

25D call 1.2504 9.29%

10 One can actually find cases where the inequality is violated for some strike K
11 We fix the SABR β parameter to 0.6. Other values of  β produce, anyway, quite similar calibrated 
volatilities
12 To be precise, on that date the three-month expiry counted 94 days
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Two consistency results for the VV price
We now state two important consistency results that hold for the 
option price (7) and that give further support to the VV procedure.

The first result is as follows. One may wonder what happens if 
we apply the VV curve construction method when starting from 
three other strikes whose associated prices coincide with those 
coming from formula (7). Clearly, for the procedure to be robust, 
we would want the two curves to exactly coincide. This is indeed 
the case.

In fact, consider a new set of strikes H := {H1, H2, H3}, for 
which we set:

  

C H H i( ) = C K H i( )

= C BS H i( ) + x j H i( )
j=1

3

∑ C MKT K j( ) − C BS K j( )





 

(8)

where the superscripts H and K highlight the set of strikes the 
pricing procedure is based on, and weights xj are obtained from K 
with formulas (6). For a generic strike K, denoting by xi(K; H) 
the weights for K that are derived starting from the set H, the 
option price associated to H is defined, analogously to (7), by:

 

C H K( ) = C BS K( ) + x j K ;H( )
j=1

3

∑ C H H j( ) − C BS H j( )





where the second term in the sum is now not necessarily zero 
since H2 is in general different from K2. The following proposition 
states the desired consistency result.
■ Proposition 2. The call prices based on H coincide with those 
based on K, namely, for each strike K:

  C
H K( ) = C K K( )  

(9)

A second consistency result that can be proven for the option 
price (7) concerns the pricing of European-style derivatives and 
their static replication. To this end, assume that h(x) is a real 
function that is defined for x ∈ [0, ∞), is well behaved at infinity 
and is twice differentiable. Given the simple claim with payout 
h(ST) at time T, we denote by V its price at time zero, when taking 
into account the whole smile of the underlying at time T. By Carr 
& Madan (1998), we have:

V = e− r dT h 0( ) + S0e− r f T ′h 0( ) + ′′h K( )C K( )dK
0

+∞
∫

The same reasoning adopted above (see ‘The VV method: the 
replicating portfolio’) with regard to the local hedge of the call 
with strike K can also be applied to the general payout h(ST). 
We can thus construct a portfolio of European-style calls with 
maturity T and strikes K1, K2 and K3, such that the portfolio 
has the same vega, ∂Vega/∂Vol and ∂Vega/∂Spot as the given 
derivative. Denoting by VBS the claim price under the BS 
model, this is achieved by finding the corresponding portfolio 
weights xh

1, x
h
2 and xh

3, which are always unique (see Proposi-
tion 1). We can then define a new (smile-consistent) price for 
our derivative as:

 
V = V BS + xi

h C MKT Ki( ) − C BS Ki( ) 
i=1

3

∑
 

(10)

which is the obvious generalisation of (7). Our second consist-
ency result is stated in the following.
■ Proposition 3. The claim price that is consistent with the 
option prices (7) is equal to the claim price that is obtained by 
adjusting its BS price by the cost difference of the hedging portfo-
lio when using market prices CMKT(Ki) instead of the constant-
volatility prices CBS(Ki). In formulas:

V = V
Therefore, if we calculate the hedging portfolio for the claim 

under flat volatility and add to the BS claim price the cost differ-
ence of the hedging portfolio (market price minus constant-vola-
tility price), obtaining V

_
, we exactly retrieve the claim price V as 

obtained through the risk-neutral density implied by the call 
option prices that are consistent with the market smile.13

As an example of a possible application of this result, Castagna 
& Mercurio (2005) consider the specific case of a quanto option, 
showing that its pricing can be achieved by using the three basic 
options only and not the virtually infinite range that is necessary 
when using static replication arguments.

An approximation for implied volatilities
The specific expression of the VV option price, combined with 
our analytical formula (6) for the weights, allows for the deri-
vation of a straightforward approximation for the VV implied 
volatility ς(K), by expanding both members of (7) at first order 
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2 Euro/dollar implied volatilities and their approximations plotted against strikes and put deltas (in absolute value)

13 Different but equivalent expressions for such a density can be found in Castagna & Mercurio (2005) 
and Beneder & Baker (2005)
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in σ = σ2. We obtain:

 

ς K( ) ≈ ς1 K( ) :=
ln K 2

K ln K 3
K

ln K 2
K1

ln K 3
K1

σ1

+
ln K

K1
ln K 3

K

ln K 2
K1

ln K 3
K 2

σ 2 +
ln K

K1
ln K

K 2

ln K 3
K1

ln K 3
K 2

σ 3

 

(11)

The implied volatility ς(K) can thus be approximated by a linear 
combination of the basic volatilities σi, with coefficients that add 
up to one (as tedious but straightforward algebra shows). It is also 
easily seen that the approximation is a quadratic function of lnK, 
so that one can resort to a simple parabolic interpolation when log 
co-ordinates are used.

A graphical representation of the accuracy of the approxi-
mation (11) is shown in figure 2, where we use the same euro/
dollar data as for figure 1. The approximation (11) is extremely 
accurate inside the interval [K1, K3]. The wings, however, tend 
to be overvalued. In fact, being the quadratic functional form 
in the log-strike, the no-arbitrage conditions derived by Lee 
(2004) for the asymptotic value of implied volatilities are vio-
lated. This drawback is addressed by a second, more precise, 
approximation, which is asymptotically constant at extreme 
strikes, and is obtained by expanding both members of (7) at 
second order in σ = σ2:

 

ς K( ) ≈ ς2 K( ) := σ 2

+
−σ 2 + σ 2

2 + d1 K( )d2 K( ) 2σ 2 D1 K( ) + D2 K( )( )
d1 K( )d2 K( )  

(12)

where:
D1 K( ) := ς1 K( ) − σ 2

D2 K( ) :=
ln K 2

K ln K 3
K

ln K 2
K1

ln K 3
K1

d1 K1( )d2 K1( ) σ1 − σ 2( )2

+
ln K

K1
ln K

K 2

ln K 3
K1

ln K 3
K 2

d1 K 3( )d2 K 3( ) σ 3 − σ 2( )2

As we can see from figure 2, the approximation (12) is also 
extremely accurate in the wings, even for extreme values of put 
deltas. Its only drawback is that it may not be defined, due to the 
presence of a square-root term. The radicand, however, is positive 
in most practical applications.

Conclusions
We have described the VV approach, an empirical procedure to 
construct implied volatility curves in the forex market. We have 
seen that the procedure leads to a smile-consistent pricing for-
mula for any European-style contingent claim. We have also 
compared the VV option prices with those coming from other 
functional forms known in the financial literature. We have then 
shown consistency results and proposed efficient approximations 
for the VV implied volatilities.

The VV smile-construction procedure and the related pric-
ing formula are rather general. In fact, even though they have 
been developed for forex options, they can be applied in any 
market where at least three reliable volatility quotes are avail-
able for a given maturity. The application also seems quite 
promising in other markets, where European-style exotic pay-
outs are more common than in the forex market. Another pos-
sibility is the interest rate market, where CMS convexity 
adjustments can be calculated by combining the VV price 
functional with the replication argument in Mercurio & Pal-
lavicini (2006).

A last, unsolved issue concerns the valuation of path-dependent 
exotic options by means of a generalisation of the empirical pro-
cedure that we have illustrated in this article. This is, in general, a 
quite complex issue to deal with, considering also that the quoted 
implied volatilities only contain information on marginal densi-
ties, which is of course not sufficient for valuing path-dependent 
derivatives. For exotic claims, ad hoc procedures are usually used. 
For instance, barrier option prices can be obtained by weighing 
the cost difference of the ‘replicating’ strategy by the (risk-neu-
tral) probability of not crossing the barrier before maturity (see 
Lipton & McGhee (2002) and Wystup (2003) for a description 
of the procedure for one-touch and double-no-touch options, 
respectively). However, not only are such adjustments harder to 
justify theoretically than those in the plain vanilla case, but, from 
a practical point of view, they can even have the opposite sign 
with respect to that implied in market prices (when very steep 
and convex smiles occur). We leave the analysis of this issue to 
future research. ■
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